Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
2.
Nature ; 624(7992): 602-610, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093003

RESUMO

Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets1-3. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine. Here we apply population-scale whole-genome long-read sequencing4 to profile genomic structural variation across four remote Indigenous communities. We uncover an abundance of large insertion-deletion variants (20-49 bp; n = 136,797), structural variants (50 b-50 kb; n = 159,912) and regions of variable copy number (>50 kb; n = 156). The majority of variants are composed of tandem repeat or interspersed mobile element sequences (up to 90%) and have not been previously annotated (up to 62%). A large fraction of structural variants appear to be exclusive to Indigenous Australians (12% lower-bound estimate) and most of these are found in only a single community, underscoring the need for broad and deep sampling to achieve a comprehensive catalogue of genomic structural variation across the Australian continent. Finally, we explore short tandem repeats throughout the genome to characterize allelic diversity at 50 known disease loci5, uncover hundreds of novel repeat expansion sites within protein-coding genes, and identify unique patterns of diversity and constraint among short tandem repeat sequences. Our study sheds new light on the dimensions and dynamics of genomic structural variation within and beyond Australia.


Assuntos
Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Genoma Humano , Variação Estrutural do Genoma , Humanos , Alelos , Austrália/etnologia , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/genética , Conjuntos de Dados como Assunto , Variações do Número de Cópias de DNA/genética , Loci Gênicos/genética , Genética Médica , Variação Estrutural do Genoma/genética , Genômica , Mutação INDEL/genética , Sequências Repetitivas Dispersas/genética , Repetições de Microssatélites/genética , Genoma Humano/genética
3.
Nature ; 624(7992): 593-601, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093005

RESUMO

The Indigenous peoples of Australia have a rich linguistic and cultural history. How this relates to genetic diversity remains largely unknown because of their limited engagement with genomic studies. Here we analyse the genomes of 159 individuals from four remote Indigenous communities, including people who speak a language (Tiwi) not from the most widespread family (Pama-Nyungan). This large collection of Indigenous Australian genomes was made possible by careful community engagement and consultation. We observe exceptionally strong population structure across Australia, driven by divergence times between communities of 26,000-35,000 years ago and long-term low but stable effective population sizes. This demographic history, including early divergence from Papua New Guinean (47,000 years ago) and Eurasian groups1, has generated the highest proportion of previously undescribed genetic variation seen outside Africa and the most extended homozygosity compared with global samples. A substantial proportion of this variation is not observed in global reference panels or clinical datasets, and variation with predicted functional consequence is more likely to be homozygous than in other populations, with consequent implications for medical genomics2. Our results show that Indigenous Australians are not a single homogeneous genetic group and their genetic relationship with the peoples of New Guinea is not uniform. These patterns imply that the full breadth of Indigenous Australian genetic diversity remains uncharacterized, potentially limiting genomic medicine and equitable healthcare for Indigenous Australians.


Assuntos
Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Genoma Humano , Variação Estrutural do Genoma , Humanos , Austrália/etnologia , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/genética , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/história , Conjuntos de Dados como Assunto , Genética Médica , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Genômica , História Antiga , Homozigoto , Idioma , Nova Guiné/etnologia , Densidade Demográfica , Dinâmica Populacional
4.
Nat Genet ; 55(12): 2139-2148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945902

RESUMO

Short-read sequencing is the workhorse of cancer genomics yet is thought to miss many structural variants (SVs), particularly large chromosomal alterations. To characterize missing SVs in short-read whole genomes, we analyzed 'loose ends'-local violations of mass balance between adjacent DNA segments. In the landscape of loose ends across 1,330 high-purity cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved by short reads in the 87% of the human genome where copy number could be reliably measured. Some loose ends represent neotelomeres, which we propose as a hallmark of the alternative lengthening of telomeres phenotype. These pan-cancer findings were confirmed by long-molecule profiles of 38 breast cancer and melanoma cases. Our results indicate that aberrant homologous recombination is unlikely to drive the majority of large cancer SVs. Furthermore, analysis of mass balance in short-read whole genome data provides a surprisingly complete picture of cancer chromosomal structure.


Assuntos
Neoplasias da Mama , Genômica , Humanos , Feminino , Genômica/métodos , Análise de Sequência de DNA/métodos , Genoma Humano/genética , Aberrações Cromossômicas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Variação Estrutural do Genoma/genética
5.
Curr Opin Genet Dev ; 80: 102048, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156210

RESUMO

Large structural variations (SV) are a class of mutations that have long been known to cause a wide range of genetic diseases, from rare congenital disease to cancer. Many of these SVs do not directly disrupt disease-related genes and determining causal genotype-phenotype relationships has been challenging to disentangle in the past. This has started to change with our increased understanding of the 3D genome folding. The pathophysiologies of the different types of genetic diseases influence the type of SVs observed and their genetic consequences, and how these are connected to 3D genome folding. We propose guiding principles for interpreting disease-associated SVs based on our current understanding of 3D chromatin architecture and the gene-regulatory and physiological mechanisms disrupted in disease.


Assuntos
Genoma , Neoplasias , Humanos , Neoplasias/genética , Cromatina/genética , Cromossomos , Regulação da Expressão Gênica , Variação Estrutural do Genoma/genética
6.
PLoS Genet ; 19(2): e1010514, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812239

RESUMO

Structural variations (SVs) are a key type of cancer genomic alterations, contributing to oncogenesis and progression of many cancers, including colorectal cancer (CRC). However, SVs in CRC remain difficult to be reliably detected due to limited SV-detection capacity of the commonly used short-read sequencing. This study investigated the somatic SVs in 21 pairs of CRC samples by Nanopore whole-genome long-read sequencing. 5200 novel somatic SVs from 21 CRC patients (494 SVs / patient) were identified. A 4.9-Mbp long inversion that silences APC expression (confirmed by RNA-seq) and an 11.2-kbp inversion that structurally alters CFTR were identified. Two novel gene fusions that might functionally impact the oncogene RNF38 and the tumor-suppressor SMAD3 were detected. RNF38 fusion possesses metastasis-promoting ability confirmed by in vitro migration and invasion assay, and in vivo metastasis experiments. This work highlighted the various applications of long-read sequencing in cancer genome analysis, and shed new light on how somatic SVs structurally alter critical genes in CRC. The investigation on somatic SVs via nanopore sequencing revealed the potential of this genomic approach in facilitating precise diagnosis and personalized treatment of CRC.


Assuntos
Neoplasias Colorretais , Genômica , Humanos , Genes Supressores de Tumor , Genoma , Sequenciamento Completo do Genoma , Neoplasias Colorretais/genética , Variação Estrutural do Genoma/genética , Ubiquitina-Proteína Ligases/genética
7.
Nature ; 612(7940): 564-572, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477537

RESUMO

Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.


Assuntos
Variação Estrutural do Genoma , Neoplasias , Proteínas Oncogênicas , Oncogenes , Humanos , Cromatina/genética , Rearranjo Gênico/genética , Variação Estrutural do Genoma/genética , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Cromossomos Humanos/genética , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Modelos Genéticos
8.
Proc Natl Acad Sci U S A ; 119(35): e2121333119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994645

RESUMO

SNPs associated with human stroke risk have been identified in the intergenic region between Forkhead family transcription factors FOXF2 and FOXQ1, but we lack a mechanism for the association. FoxF2 is expressed in vascular mural pericytes and is important for maintaining pericyte number and stabilizing small vessels in zebrafish. The stroke-associated SNPs are located in a previously unknown transcriptional enhancer for FOXF2, functional in human cells and zebrafish. We identify critical enhancer regions for FOXF2 gene expression, including binding sites occupied by transcription factors ETS1, RBPJ, and CTCF. rs74564934, a stroke-associated SNP adjacent to the ETS1 binding site, decreases enhancer function, as does mutation of RPBJ sites. rs74564934 is significantly associated with the increased risk of any stroke, ischemic stroke, small vessel stroke, and elevated white matter hyperintensity burden in humans. Foxf2 has a conserved function cross-species and is expressed in vascular mural pericytes of the vessel wall. Thus, stroke-associated SNPs modulate enhancer activity and expression of a regulator of vascular stabilization, FOXF2, thereby modulating stroke risk.


Assuntos
Fatores de Transcrição Forkhead , Pericitos , Acidente Vascular Cerebral , Animais , DNA Intergênico/genética , DNA Intergênico/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Variação Estrutural do Genoma/genética , Humanos , Pericitos/metabolismo , Polimorfismo de Nucleotídeo Único , Risco , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Ativação Transcricional/genética
9.
Adv Sci (Weinh) ; 9(18): e2200818, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35570408

RESUMO

Structural variations (SVs) are the greatest source of variations in the genome and can lead to oncogenesis. However, the identification and interpretation of SVs in human cancer remain technologically challenging. Here, long-read sequencing is first employed to depict the signatures of structural variations in carcinogenesis of human pancreatic ductal epithelium. Then widespread reprogramming of the 3D chromatin architecture is revealed by an in situ Hi-C technique. Integrative analyses indicate that the distribution pattern of SVs among the 3D genome is highly cell-type specific and the bulk remodeling effects of SVs in the chromatin organization partly depend on intercellular genomic heterogeneity. Meanwhile, contact domains tend to minimize these disrupting effects of SVs within local adjacent genomic regions to maintain overall stability. Notably, complex genomic rearrangements involving two key driver genes CDKN2A and SMAD4 are identified, and their influence on the expression of oncogenes MIR31HG, MYO5B, etc., are further elucidated from both a linear view and 3D perspective. Overall, this work provides a genome-wide resource and highlights the impact, complexity, and dynamicity of the interplay between structural variations and high-order chromatin organization, which expands the current understanding of the pathogenesis of SVs in human cancer.


Assuntos
Variação Estrutural do Genoma , Neoplasias Pancreáticas , Cromatina/genética , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Genômica , Humanos , Neoplasias Pancreáticas/genética
10.
Nat Methods ; 19(4): 445-448, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396485

RESUMO

Structural variants are associated with cancers and developmental disorders, but challenges with estimating population frequency remain a barrier to prioritizing mutations over inherited variants. In particular, variability in variant calling heuristics and filtering limits the use of current structural variant catalogs. We present STIX, a method that, instead of relying on variant calls, indexes and searches the raw alignments from thousands of samples to enable more comprehensive allele frequency estimation.


Assuntos
Genoma , Variação Estrutural do Genoma , Neoplasias , Algoritmos , Variação Estrutural do Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Software
11.
Nucleic Acids Res ; 50(D1): D1216-D1220, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718739

RESUMO

The European Variation Archive (EVA; https://www.ebi.ac.uk/eva/) is a resource for sharing all types of genetic variation data (SNPs, indels, and structural variants) for all species. The EVA was created in 2014 to provide FAIR access to genetic variation data and has since grown to be a primary resource for genomic variants hosting >3 billion records. The EVA and dbSNP have established a compatible global system to assign unique identifiers to all submitted genetic variants. The EVA is active within the Global Alliance of Genomics and Health (GA4GH), maintaining, contributing and implementing standards such as VCF, Refget and Variant Representation Specification (VRS). In this article, we describe the submission and permanent accessioning services along with the different ways the data can be retrieved by the scientific community.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Variação Genética/genética , Software , Animais , Variação Estrutural do Genoma/genética , Genômica , Humanos , Mutação INDEL/genética , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética
12.
Trends Genet ; 38(1): 45-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284881

RESUMO

Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV.


Assuntos
Variações do Número de Cópias de DNA , Hominidae , Animais , Variações do Número de Cópias de DNA/genética , Genoma , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Genômica , Hominidae/genética , Humanos , Análise de Sequência de DNA
13.
Cell Rep ; 37(7): 110023, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788622

RESUMO

The global impact of somatic structural variants (SVs) on gene regulation in advanced tumors with complex treatment histories has been mostly uncharacterized. Here, using whole-genome and RNA sequencing from 570 recurrent or metastatic tumors, we report the altered expression of hundreds of genes in association with nearby SV breakpoints, including oncogenes and G-protein-coupled receptor-related genes such as PLEKHG2. A significant fraction of genes with SV-expression associations correlate with worse patient survival in primary and advanced cancers, including SRD5A1. In many instances, SV-expression associations involve retrotransposons being translocated near genes. High overall SV burden is associated with treatment with DNA alkylating agents or taxanes and altered expression of metabolism-associated genes. SV-expression associations within tumors from topoisomerase I inhibitor-treated patients include chromatin-related genes. Within anthracycline-treated tumors, SV breakpoints near chromosome 1p genes include PDE4B. Patient treatment and history can help understand the widespread SV-mediated cis-regulatory alterations found in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Variação Estrutural do Genoma/genética , Recidiva Local de Neoplasia/genética , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Rearranjo Gênico/genética , Genoma Humano , Genômica , Humanos , Oncogenes , Análise de Sequência de RNA/métodos , Translocação Genética/genética , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
14.
Aging (Albany NY) ; 13(22): 24710-24739, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837693

RESUMO

Wrinkling is prominent manifestation of aging skin. A mutant phenotype characterized by systemic wrinkles and thickened skin was discovered in Xiang pig populations with incidence about 1-3%. The feature in histological structure was epidermal hyperplasia and thickening, collagen fibers disorder. To uncover genetic mechanisms for the mutant phenotype of Xiang pigs with systemic wrinkle (WXP), a genome-wide of structural variations (SVs) in WXP was described by next generation resequencing, taking Xiang pigs (XP) and European pigs (EUP) as compares. Total of 32,308 SVs were detected from three pig groups and 965 SVs were identified specifically from WXP, involving 481 protein-coding genes. These genes were mainly enriched in nuclear structure, ECM components and immunomodulatory pathways. According to gene function and enrichment analysis, we found that 65 candidate SVs in 59 protein genes were probably related with the systemic wrinkle of WXP. Of these, several genes are reported to be associate with aging, such as EIF4G2, NOLC1, XYLT1, FUT8, MDM2 and so on. The insertion/deletion and duplication variations of SVs in these genes resulted in the loss of stop-codon or frameshift mutation, and aberrant alternative splicing of transcripts. These genes are involved in cell lamin filament, intermediate filament cytoskeleton, supramolecular complex, cell differentiation and regulation of macromolecule metabolic process etc. Our study suggested that the loss of function or aberrant expression of these genes lead to structural disorder of nuclear and the extracellular matrix (ECM) in skin cells, which probably was the genetic mechanisms for the mutant phenotype of systemic skin wrinkle of Xiang pig.


Assuntos
Variação Estrutural do Genoma/genética , Envelhecimento da Pele/genética , Sus scrofa/genética , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Suínos
15.
PLoS Comput Biol ; 17(10): e1009186, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634042

RESUMO

Read-depths (RDs) are frequently used in identifying structural variants (SVs) from sequencing data. For existing RD-based SV callers, it is difficult for them to determine breakpoints in single-nucleotide resolution due to the noisiness of RD data and the bin-based calculation. In this paper, we propose to use the deep segmentation model UNet to learn base-wise RD patterns surrounding breakpoints of known SVs. We integrate model predictions with an RD-based SV caller to enhance breakpoints in single-nucleotide resolution. We show that UNet can be trained with a small amount of data and can be applied both in-sample and cross-sample. An enhancement pipeline named RDBKE significantly increases the number of SVs with more precise breakpoints on simulated and real data. The source code of RDBKE is freely available at https://github.com/yaozhong/deepIntraSV.


Assuntos
Aprendizado Profundo , Variação Estrutural do Genoma/genética , Modelos Genéticos , Sequenciamento Completo do Genoma/métodos , Genoma Humano/genética , Genômica , Humanos
16.
Genes (Basel) ; 12(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34356100

RESUMO

Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species-and the underlying mechanism by which structural variants most often contribute to speciation-remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.


Assuntos
Variação Estrutural do Genoma/genética , Especificidade da Espécie , Adaptação Fisiológica , Animais , Evolução Biológica , Evolução Molecular , Humanos , Fenótipo , Isolamento Reprodutivo
17.
Front Immunol ; 12: 674778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025673

RESUMO

The KIR (killer-cell immunoglobulin-like receptor) region is characterized by structural variation and high sequence similarity among genes, imposing technical difficulties for analysis. We undertook the most comprehensive study to date of KIR genetic diversity in a large population sample, applying next-generation sequencing in 2,130 United States European-descendant individuals. Data were analyzed using our custom bioinformatics pipeline specifically designed to address technical obstacles in determining KIR genotypes. Precise gene copy number determination allowed us to identify a set of uncommon gene-content KIR haplotypes accounting for 5.2% of structural variation. In this cohort, KIR2DL4 is the framework gene that most varies in copy number (6.5% of all individuals). We identified phased high-resolution alleles in large multi-locus insertions and also likely founder haplotypes from which they were deleted. Additionally, we observed 250 alleles at 5-digit resolution, of which 90 have frequencies ≥1%. We found sequence patterns that were consistent with the presence of novel alleles in 398 (18.7%) individuals and contextualized multiple orphan dbSNPs within the KIR complex. We also identified a novel KIR2DL1 variant, Pro151Arg, and demonstrated by molecular dynamics that this substitution is predicted to affect interaction with HLA-C. No previous studies have fully explored the full range of structural and sequence variation of KIR as we present here. We demonstrate that pairing high-throughput sequencing with state-of-art computational tools in a large cohort permits exploration of all aspects of KIR variation including determination of population-level haplotype diversity, improving understanding of the KIR system, and providing an important reference for future studies.


Assuntos
Variação Estrutural do Genoma/genética , Receptores Imunológicos/genética , Receptores KIR/genética , Alelos , Estudos de Coortes , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , América do Norte , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , População Branca/genética
18.
Am J Hum Genet ; 108(4): 583-596, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798444

RESUMO

The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole-genome sequencing (WGS) data of 4,848 individuals. We tested the 64,572 common and low-frequency SVs for association with 116 quantitative traits and tested candidate associations using exome sequencing and array genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant associations at 15 loci, including 2 loci at which SVs have strong phenotypic effects: (1) a deletion of the ALB promoter that is greatly enriched in the Finnish population and causes decreased serum albumin level in carriers (p = 1.47 × 10-54) and is also associated with increased levels of total cholesterol (p = 1.22 × 10-28) and 14 additional cholesterol-related traits, and (2) a multi-allelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate (p = 4.81 × 10-21) and alanine (p = 6.14 × 10-12) levels and resides within a structurally complex genomic region that has accumulated many rearrangements over evolutionary time. We also confirmed six previously reported associations, including five led by stronger signals in single nucleotide variants (SNVs) and one linking recurrent HP gene deletion and cholesterol levels (p = 6.24 × 10-10), which was also found to be strongly associated with increased glycoprotein level (p = 3.53 × 10-35). Our study confirms that integrating SVs in trait-mapping studies will expand our knowledge of genetic factors underlying disease risk.


Assuntos
Doenças Cardiovasculares/genética , Variação Estrutural do Genoma/genética , Alelos , Colesterol/sangue , Variações do Número de Cópias de DNA/genética , Feminino , Finlândia , Genoma Humano/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Proteínas Mitocondriais/genética , Regiões Promotoras Genéticas/genética , Piruvato Desidrogenase (Lipoamida)-Fosfatase/genética , Ácido Pirúvico/metabolismo , Albumina Sérica Humana/genética
19.
PLoS Genet ; 17(4): e1009324, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901175

RESUMO

Acquisition of genetic material from viruses by their hosts can generate inter-host structural genome variation. We developed computational tools enabling us to study virus-derived structural variants (SVs) in population-scale whole genome sequencing (WGS) datasets and applied them to 3,332 humans. Although SVs had already been cataloged in these subjects, we found previously-overlooked virus-derived SVs. We detected non-germline SVs derived from squirrel monkey retrovirus (SMRV), human immunodeficiency virus 1 (HIV-1), and human T lymphotropic virus (HTLV-1); these variants are attributable to infection of the sequenced lymphoblastoid cell lines (LCLs) or their progenitor cells and may impact gene expression results and the biosafety of experiments using these cells. In addition, we detected new heritable SVs derived from human herpesvirus 6 (HHV-6) and human endogenous retrovirus-K (HERV-K). We report the first solo-direct repeat (DR) HHV-6 likely to reflect DR rearrangement of a known full-length endogenous HHV-6. We used linkage disequilibrium between single nucleotide variants (SNVs) and variants in reads that align to HERV-K, which often cannot be mapped uniquely using conventional short-read sequencing analysis methods, to locate previously-unknown polymorphic HERV-K loci. Some of these loci are tightly linked to trait-associated SNVs, some are in complex genome regions inaccessible by prior methods, and some contain novel HERV-K haplotypes likely derived from gene conversion from an unknown source or introgression. These tools and results broaden our perspective on the coevolution between viruses and humans, including ongoing virus-to-human gene transfer contributing to genetic variation between humans.


Assuntos
Genoma Humano/genética , Variação Estrutural do Genoma/genética , Interações Hospedeiro-Patógeno/genética , Vírus/genética , Betaretrovirus/genética , Linhagem Celular , Retrovirus Endógenos/genética , Regulação da Expressão Gênica , HIV-1/genética , Herpesvirus Humano 6/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética , Vírus/isolamento & purificação , Sequenciamento Completo do Genoma
20.
Int J Legal Med ; 135(4): 1341-1349, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895855

RESUMO

Sudden unexplained death (SUD) takes up a considerable part in overall sudden death cases, especially in adolescents and young adults. During the past decade, many channelopathy- and cardiomyopathy-associated single nucleotide variants (SNVs) have been identified in SUD studies by means of postmortem molecular autopsy, yet the number of cases that remain inconclusive is still high. Recent studies had suggested that structural variants (SVs) might play an important role in SUD, but there is no consensus on the impact of SVs on inherited cardiac diseases. In this study, we searched for potentially pathogenic SVs in 244 genes associated with cardiac diseases. Whole-exome sequencing and appropriate data analysis were performed in 45 SUD cases. Re-analysis of the exome data according to the current ACMG guidelines identified 14 pathogenic or likely pathogenic variants in 10 (22.2%) out of the 45 SUD cases, whereof 2 (4.4%) individuals had variants with likely functional effects in the channelopathy-associated genes SCN5A and TRDN and 1 (2.2%) individual in the cardiomyopathy-associated gene DTNA. In addition, 18 structural variants (SVs) were identified in 15 out of the 45 individuals. Two SVs with likely functional impairment were found in the coding regions of PDSS2 and TRPM4 in 2 SUD cases (4.4%). Both were identified as heterozygous deletions, which were confirmed by multiplex ligation-dependent probe amplification. In conclusion, our findings support that SVs could contribute to the pathology of the sudden death event in some of the cases and therefore should be investigated on a routine basis in suspected SUD cases.


Assuntos
Morte Súbita/patologia , Variação Estrutural do Genoma/genética , Cardiopatias/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Alquil e Aril Transferases , Proteínas de Transporte/genética , Criança , Pré-Escolar , Estudos de Coortes , Proteínas Associadas à Distrofina/genética , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Neuropeptídeos/genética , Fases de Leitura Aberta , Suíça/epidemiologia , Canais de Cátion TRPM , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...